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Gentle Perturbations of the Free Bose Gas. I
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It is demonstrated that the thermal structure of the noncritical free Bose gas is
completely described by certain periodic generalized Gaussian stochastic process
or equivalently by a certain periodic generalized Gaussian random field. Elemen-
tary properties of this Gaussian stochastic thermal structure are established.
Gentle perturbations of several types of the free thermal stochastic structure
are studied. In particular, new models of non-Gaussian thermal structures are
constructed and a new functional integral representation of the corresponding
Euclidean-time Green functions is obtained rigorously.

KEY WORDS: Free Bose gas; W*-KMS structure; periodic generalized
stochastic process; gentle perturbations; multitime Green functions.

1. INTRODUCTION

A variety of existence and analycity results—as well as constructive
ones—have been rigorously obtained for some realistic models of non-
relativistic quantum matter in thermal equilibrium.”'"® Nevertheless, a
number of basic questions on the origin of fundamental macroscopic quan-
tum phenomena such as superconductivity, superfluidity, etc.-'®) are
lacking rigorous demonstration in the above realistic treatments. Only for
mean-field-like and exactly solvable models has a mathematically well-
defined analysis of these phenomena been performed.'™'*) It is worthwhile
to mention here the recent activity on the superconductivity problem in
Fermi matter models of physical interest,''*') which is based on the
rigorous renormalization group approach of Gallavotti and co-workers. !¢’

The main objective of the present series of papers is to construct a
class of models of self-interacting nonrelativistic Bose matter in a thermal
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equilibrium for which a rigorous discussion of the Bose-Einstein condensa-
tion, as well as other phase transitions, would be feasible. In order to
approach this goal, we intend to use extensively methods from the con-
structive Euclidean QFT. In the first paper of the planned series the
stochastic content of the fundamental W*-KMS structure of a free, non-
critical Bose gas!'” is described. We prove that the Abelian sector of the
Weyl algebra may be described by a certain generalized periodic stochastic
process with values in 2'(R¥) (the space of the Schwartz distributions) and,
what is more, that a reconstruction of the whole thermal structure can be
derived from it (Proposition 2.5 below). A similar situation occurs in the
case of the critical Bose gas when the underlying process is nonergodic.'®
Having described a free Bose gas in terms of stochastic processes, one may
perturb them with multiplicative (-like) functionals, thereby creating some
new non-Gaussian thermal processes. Furthermore, given such a process,
one is able to reproduce its W*-KMS counterpart by methods of refs. 17,
19, and 20. In this article we shall confine ourselves to the simplest case of
perturbations, which we have called (after ref. 21) gentle perturbations of a
free thermal process. Using standard tools of statistical mechanics,®® such
as, for example, the Kirkwood—Salsburg analysis, the correlation inequalities
of ref. 5, and homogeneous limits, we provide a class of Euclidean invariant
models of self-interacting Bose matter than can be controlled rigorously, as
we shall demonstrate in Section 3.

The unbounded (of polynomial type) perturbations of a free thermal
structure will be studied in another paper of this series.'® In the critical
region nonergodicity is preserved under gentle perturbations (cf. the second
part of ref. 18), but whether this is related to the arising of the Bose
condensate in an interacting system remains to be resolved.

The pioneering paper of ref. 21 and refs. 23-25 have provided, among
others, the major inspirations for our own Euclidean attitude to many-
boson physics. The methods of classical statistical mechanics have been
already applied to the study of certain quantum systems in refs. 24, 26, and
27, and, to some extent, our approach to an interacting Bose gas resembles
that of these authors.

2. FREE BOSE GAS(ES). EUCLIDEAN ASPECTS

The main aim of this section is to point out certain stochastic aspects
that arise in the Euclidean time of the thermal structure describing systems
of noninteracting Bose particles in the thermal equilibrium at (inverse)
temperature >0 and with chemical activity z. Most of the results
obtained below apply well to the case when the kinetic energy function
&(p) of the individual particle is such that:
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(i) Vg, e " is a positive-definite, continuous function of p € R¢,
or equivalently:

(i) {e="~"V),t>0} generates a semigroup of positivity-preserving
operators on L,(R7).

The most general form of such functions is given by the Levi-Khintchine
formula (see, e.g., refs. 28 and 29)

é”(p)=a+ib-p+p-c-p—j [eP*— 1 —iph(x)] r(dx)  (2.1)

where a is some real constant, b is some vector in R?; C is some non-
negative-definite matrix, and r is some nonnegative measure on R¢,
called the Levy measure, such that IRdl A Ix|? r(dx) < co, where x A y =
min{x, y}; h is the so-called cutoff function with compact support and
satisfying A(x) = x in some neighborhood of the origin (see, e.g., ref. 28 for
the role played by the cutoff function # in this scheme). In particular, the
functions &(p) =|p|*, 0 <a <2, or &(p)=(p?+ m?)'/? belong to this class.
The common feature of all such functions is that the corresponding semi-
groups {e "¥=¥) >0} are generated by stochastic Markov processes
with stationary independent increments known as Levy processes. 2 %)

The kernels of the semigroups {e ~***="’, 1 > 0}, denoted as " {*)(x, y),
have explicit expressions through the corresponding path space integrals.
This enables us to apply the methods of ref. 1 to reproduce (up to some
extent) the basic results of refs. 1-4 for interacting gases with nonstandard
kinetic energy. The corresponding results are reported elsewhere.3®

In the present paper we confine ourselves to the following choices:

o &(p) = p?, called the standard Bose gas.
o &(p)=(p*+mH)2 m =0, called the semirelativistic Bose gas.

In the case of standard Bose gas the corresponding path space integral
is well known as the Wiener (conditioned) integral and in this case the
corresponding transition function has a kernel

H i, y)= B (22)

In the case of the semirelativistic Bose gas the corresponding transition
function has a kernel
e~ 12/4re —nmPr

4 ©
AT y) = | e A ) (23)
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with fast exponential decay as |x — y| » oo for m >0 and in the case m=0
equal to the well-known symmetric Cauchy density:

c-1
(t2+ lx_yIZ)(d+l)/2

A, y) = (24)

2.1. Global Aspects

Let #°(h) be the abstract Weyl algebra built over the one-particle
space h= L,(R“) equipped with the standard symplectic form o(f, g) =
Im<{ f| g)>. For a chosen kinetic energy function &(p) as above, we define
the free thermal state w{®*’ on the algebra % (h):

O (W) =exp—1 [ dp 1 /(p)I* CH(p) (25)
where
142 —BE(py
Ch(p) El—i% (26)

0 < B is the (inverse) temperature, z = e~ is the chemical activity, and u
is the chemical potential. The values of z (corresponding to the noncritical
regime of the free Bose gas exclusively considered here) are restricted to

O=supze 5P <]
P

which in the case &(p)= p> or &(p)=|p| corresponds to 0 <z <1 (resp.
u>0)and 0<ze P <1 (resp. u> —m) if m>0 and &(p)=(p*+m?)'".

Some elementary properties of the free thermal kernel C5(x) are
collected in the following proposition.

Proposition 2.1. For any noncritical value of z the corresponding
free thermal kernels C#(x) have the following properties:

(i) C8(x)=4d(x)+ RA(x), where RE(x)>0 for any xeR’ and
RE(x)e S(RY) if &(p) = p? or &(p)=(p*+m?)'” with m>0.

(i) If &(p)=|pl, then CH(x)=35(x)+ RE(x), where R%(x)>0 and
REe Co(RY) A L,(RY) ~ C=(RY).

Proof. From the assumption sup, ze “#'”) < 1 we obtain the equality
CHp)=1+Ri(p) (27)

where RE(p) =232 | z"e ~Fnér),
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From the positive-definiteness of the function peRY—e~'» for
each ¢>0, it follows that for each n, exp[ —fné&(p)] is the Fourier
transform of some positive measure du? on R?. Moreover, from the fact
that exp — fné(p) e S(RY) in case (i) it follows that du’(x)=p#(x)d?x,
with pf(x)e S(RY). By elementary arguments it follows that also

@ z"exp— Bné(p)e S(RY) in case (i); therefore we conclude that all
assertions of (i) are valid. The conclusions of (ii) follow from the explicit

form (2.4) of the corresponding kernels and elementary arguments. ||

Let (54, £2y, ) be the corresponding GNS triplet obtained from
(#(h), o##). Then defining a%(mo(W(f))=no(W(z~"Pe™P)fY)), we
obtain a o-weakly continuous group of automorphisms of my(# (h)).”
It is well known that the system C,= (5, Q,, a?; no(#7(h))") forms a
W*.-KMS system in the (inverse) temperature f (see, e.g., ref. 17). The
corresponding multitime Green functions of the system C, are given by

GO((tl > fl)""’ (tn’ .fn)) = wgﬂ‘ﬂ)(a?l(no( W(fl)) e <x'(f),,(n()( W(f;x)))
= H [exp io((t;, fi),([j’f,‘))

I<ig<jgn
xexp—1 [ 7(p) (p) GBlt—1;: p)dp | (28)

where

a'((t,-, f,), (fj, f/)) =Im<:—iu/llen,-6(p)fi|:—hj/liei:,-a(p)fj> (2.9)
- —it]B,it8(p) L+it/f, —(B+it) E(p)

z e +z e

G p)=

(2.10)

1 —ze P,

By elementary arguments they can be extended analytically to the
holomorphic functions Go((;, fi)s.... ({5 £,)) of

{ (gl ey gu) € Tl/f

{C"=(Cl,~-, (el Im{<Imfy < -,

S (m¢y,,—Im ci)<ﬂ}

i=1

and continuous on T4. The restrictions of the analytically continued Green
functions to the so-called Euclidean region

Ef={zeC"|Rez;=0; —f2<Imz, < --- <Imz,<Imz,, < --- <B/2)
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will be called Euclidean Green functions of the free Bose gas and their full
collection extended to |J,-o # (h)*" by linearity will be denoted by *G°.
The following abbreviations will be used:

EA+={(S,,.,S,)eE£|0<S} (2.11)

Sk=(S*%,.,S¥)eE? (2.12)

W= (k... Whew(h)** (2.13)

EGQ(S5)=5GY,, _ wi(S1hs Si) (2.14)

5= (f1,0 fr) € Ly(R) *K (2.15)
EGU(S*) = %G, . 1(Sismr Si)

= EG?W(A) ..... wsn( 1o Si) (2.16)

Sk = (= Sk —S)) for S*eEf (2.17)

W =(W .., W) for W¢=(W,,., W,) (2.18)

(W™, S"y=((W,,S),.. W,,S,)) (2.19)

Proposition 2.2. Let
wi (St S| Wi #(h), (S),..., S) € Ef}

be the collection of the Euclidean Green functions of the free Bose gas
in the noncritical regime. Then the collection “G° has the following
properties:

EG(1) (i) For each fixed W¥e % (h) ** the map
Ef38* = EGou(S¥)

18 continuous.
(i) For each fixed S*€ E# the map

W (h) ** 5 W = EGS,.(S%)
is multilinear and for any f* e L,(R)** the map
Ly(RY) *k 3 f% - EGY(SF)

is continuous and obeys the estimate |£G(S*)| < 1.
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(iii) For any S*e E# and any Se [ —p/2, §/2] such that S, + S< /2
the Euclidean Green functions are locally shift invariant, ie, for any
W~e #°(h)**

EGY,(S* + 8) = EGY(SY)

where S¥ 4+ S=(S,+ S,..., S, + S).

(iv) For any W¥e #7(h)**, any S*:3, (., _, S;=S,,, we have the
equality

EGY(S*) = G (St
where
wf.-)=(Wl seos Wit Wi- Wi 15 Wi)
(= (S1ss Sis Si 20002 S)

(v) For any W¥e# (h)**:3,_,cr: W;=1 the following equality
holds

EGo(S*) = "'Gfi,wk-x((,-)S"‘ h
where
WGWE D= (W, Wi_1, Wig e Wi)
STV =(8 Si_ s Sig 1o Sk)
(vi) £G0)=1.
EG(2) (OS-positivity). For any terminating sequences
W=(W°, W' _ . W ) §$=(8°.., S .)
with
Ske Ef+ forall k=1,2,.
(2.20)
Y. G wi(84, 8120
kol
EG(3) For any terminating sequences
W=(Wo, W' W- ),  S8=(S°.,85.)
with

Ske EL+ forall k=1,2,.
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and for any f e L,(R%)
Y FGoue 77 wi(857,0,0, SHS Y FGh wi(S5 8 (221)
k. k.1
EG(4) (Weak form of the KMS condition). Let
B B s ﬁ>

..... —E, Sl —E,..., "—E

.....

for 0<S,< - <85, <8 Then for each n, W"+'e % (h)*",
!/V,,_l()B_Sn, ﬂ_Sn+Sl""’ﬂ_Sn—*_Sn—l) (222)

Wn+I(S") = EG(;,V W

EG(5) (Euclidean invariance and uniqueness of the vacuum).
Under the natural action 7, 4 of the Euclidean group of motions E(d) on
the Weyl algebra W{(h) the Euclidean Green functions are:

(i) Invariant.
(ii) Have the cluster decomposition property, i.e., for any
W¥4e % (h)**, W'e % (h)*' Ske EE, S'eEFf
we have
|a1|lfloo Gr‘ 0y Wt wI(Sk I) EG%V/:(SA) . EGWI(SI) (223)

Proof. Let us consider the free gas GNS W*.-KMS structure
Co= (A, Lo, %, mo(#(h))"). By the Araki theorem®" the Euclidean
Green functions are represented as

EGU(S") = Qo oG (mo({ W)} - - &Q (o W,,)) 26 (2.24)
and by the very definition of C,
@ HUW(f)) = (R0, ol W(f)) Q0 (2.25)

Now everything follows easily from (2.24) and the Araki theorem. In
particular the OS positivity EG(2) follows from the fact that the Lh.s. of
(2.20) can be written as

Lhs. of(2.20)s<<z IT e (ol WAfE) >|90|

/\/kl

<Z Il ok (mo( W(f4))) 2 >> (2.26)

k k=1
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The weak form of the KMS condition, formulated as EG(4), can be
observed easily from the explicit formula (2.8) for the corresponding Green
functions. ||

Remarks. As demonstrated in ref 20, the multitime Euclidean
Green functions of any C*- (or W*-) KMS structure obey similar
properties EG(1)-EG(4) with the obvious modifications of the continuity
properties EG(2)(ii) and EG(3). It can be checked using the basic results
of refs. 1-4 that the Euclidean Green functions of dilute Bose gases (and
also of dilute Fermi gases built over the CAR algebra over h) in the regime
considered by Ginibre!! obey the system EG(1)-EG(S5). The detailed study
of the modular structures that arise (see below) are now under investiga-
tion. The Euclidean Green functions of the critical Bose gas also obey
properties similar to EG(1)-EG(5i) and their restrictions to the Abelian
sector (of the Weyl algebra) fulfill also EG(6) (see below).

The complex subalgebra /(h) of #7(h) generated by the elements
W(f) with f = f will be called an Abelian sector of #'(h) and the corre-
sponding free Euclidean Green functions restricted to «(h) will be denoted
by #4G,. For —f/2<s,< --- <5,< f/2 we have

EAGO((S]’fl),-"’ (Srn .fn))= 1_[ eXp——Sﬂ(S Sl’f®fn (227

1gigjsn

where

Slis, £,®1,)=[ $&s, ») T(P) fi(p) dp (228)

75/Bp—s6(p) + ZV1=5/Bp—(f—5)E(p)

S, p)= (2.29)

1 — ze P8P

The periodic extension of $4(s, p) to the whole R shall be denoted by the
same symbol. The fundamental properties of the free thermal kernels
S&(s, x) are collected in the following proposition.

Proposition 2.3. 1. Let $5 be the free thermal kernel (2.29) with
&(p)=p? or &(p)=(p*+m*)'2, m>0. Then for any 0 < s< f, and z non-
critical, we have:

(i) 0<S”( ) e S(RY) if se (0, B).
(i) S50,-)=S5p,-)=Ck-) in 2'(R?) sense.

2. Let é’(p)=[p|; then for any 0<s<f, 0 <z <1, we have:
(i) 0<S%Gs,-)e L (RY) A Co(RY) N C=(RY) if s€(0, B).
(i) S50, )=SEp,-)=Ch-) in 2'(R?) sense.

822'80/3-4-25
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3. For &(p)=p* or &(p)=(p*+m*)"%, m=0, the kernel S% is
stochastically positive on the space L,(K;x R¢), ie, for any
g1, 82 EL2(Kﬂ)7 fl PR fn ELZ(Rd)a Cl 3vees Cn € C, we have

Y C.CuSh(g,®f.)8,®f5) =0 (2.30)
a, fi=1

where
sigeslg @)= a| i g6 () [ax [ ay

xf(x) f'(y) S§(1s—5'l, x— y) (2.31)

4. For &(p)=p* or &(p)=(p*+m*)'?, m>0, the kernel S¥ is OS
positive on the circle K, ie., for any t,,.., ¢, in [0, /2], f1,-., f,,€ LY(R9),
Ciys €, € C, we have

zpc‘mcpjdxj-dy SEt. 4151 f.® 1) >0 (2.32)
Proof. From the assumption sup, ze 7"’ <1 it follows that
St p)= 3, Fy(s, p) (233)
where

Fn(s’ p)=2" +5/Bp—(n+5)6(p) 4 Jn+1—s/fy—(fln+1)~5)8(p) (2.34)

So, if &(p)=p? or &(p)=(p*+m?)'?, m>0, then F,(s, p)eS(RY) for
eachn>1and n=0if s (0, #). In this case also ;% , z" exp[ —fné(p)] e
S(R¥). Taking into account that

Sg(s, D) =< Z z"e-ﬂmf(P)> (ZS/l?e—sJ(p) +zl—5/ﬁe—(ﬁ—s)c$(p))

nz=0

it follows that also SA(s, p) e S(R?) if s€ (0, B). Moreover, S4(s, x) >0 for
any x e R%
Similarly, if &(p)=|p|, then we have

Soﬂ(s, p) = ( Z Zhe—Fn Ipl> (zs/ﬁe—s 7l 4 Zl=s/Bp—(f—5) lpl) (2_35)

nz=0
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Therefore from the continuity of the Fourier transform and (2.4) we obtain

z"c

Sh(s, x)= > (P2 + [xP)7 7

nz=0

zPc '~
X
(i grem™)

_ n+s/B ¢
27 W R
Zn+l——s/ﬂ ¢ 23
+n§0 {[ﬂ(n+l)+s]2+|x|2}d“/2 ( . 6)

The above series are uniformly convergent on R¢ and define a continuous
function with decay at least as 1/(s®>+ |x|2)¢*'? for |x| oo, which is
integrable provided s> 0.

Although claims 3 and 4 follow easily from a basic characterization
theorem of KL% we present simple proofs for the reader’s convenience.
Expanding into the Fourier series the periodic function $4(s, p) we obtain:

S%s, p)=Y {[Bu+&(p))* +(27n)*} ' 28 uf + &(p)]

neZ

x(l _e—B[ﬂ+J(p)])(1 —ze —M(p))—l el2mns/pB (2‘37)

Because all the Fourier coefficients in the expansion (2.37) are positive, the
stochastic positivity (2.30) follows. The OS positivity of the one-time
Euclidean Green function is a general feature of all KMS systems, as
demonstrated in ref. 19. The straightforward proof of 4 is as follows. Let

Co= (4, R0, 7y, 01?§ (W (h))")

be the basic GNS W*-KMS system of the free Bose gas. Then we can write

2

Z cacﬂSOﬂ(sa+Sﬂ|f_a®fﬂ) =
«

Z Ca“g‘(ﬂo(W(fa)) Qg

>0 8 (2.38)

Remarks. 1. Let A4 be a nonnegative, self-adjoint generator of
unitary group U 2z~ /e =6(P) acting in the space h= L,(R?) and let dP*
be the corresponding spectral measure of 4%. Then, defining the covariance
operator

© dP*(A
I"é’(s)sfo l_e(_,)u(e"“-i-e“”"“) (2.39)




886 Gielerak and Olkiewicz

acting in h by definition

(fTie>=Silf®8) (240)

we see that the kernel S%(s| f® g) belongs to the class of kernels con-
sidered in ref. 32.

2. Let us observe that the periodic kernels "Sy(s, p) = F,(s, p) for
each n also have the positivity properties stated in points 3 and 4 of
Proposition 2.3. This leads to an interesting decomposition of the free
thermal process &9 defined below as a sum of independent OS-positive
Gaussian processes £0-”, which have covariances equal to "Sy(s, p). This
decomposition might be eventually used to develop a rigorous renormalisa-
tion group analysis of interacting Boses gases.

Proposition 2.4. The collection 4G, of the Euclidean Green
functions of the free Bose gas in the noncritical regime obeys the properties
EG(1)-EG(5) of Proposition 2.2 and additionally:

EG(6) (Stochastic positivity). For any
SeEf,  fr=(f%.. f): fE=fre Ly(RY)
we have

Z EG‘?k.’f/(gk, §]) =0 (2.41)
k, I -

Proof. From assertion 3 of Proposition 2.3 it follows by standard
construction (see, e.g., refs. 28 and 32) that there exists a Gaussian process
(&) ek, indexed by L*(R?) with mean zero and the covariance given by
S&(z, x). The rhs. of (2.41) can be rewritten in terms of (£°) as

ng 2

E\Y T exp ikl 15| 1

k k=1

Having defined a system of Euclidean multitime Green functions with
the properties listed in Proposition 2.2, we can apply the constructions of
ref. 20 to build certain W *-KMS structures. The interesting aspect of the
proposition below is that the system of Euclidean Green functions of the
free Bose gas restricted to .o/ (h) already contains all information of the free
Bose gas.

Proposition 2.5. Let &(p)=p® or &(p)=(p>+m?)'?, m>0, and
let z be noncritical. Then:
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1. There exists a unique (up to a unitary equivalence) W*-KMS
system “C = (%54, £Q,, a?, *m,) and a bounded *-representation £z, of
# (h) such that:

(i) Ero(#(h)) < Pm,.
(ii) The multitime Euclidean Green functions of EC, restricted to
Eno(# (h)) coincide with £G,,.
(iii) We have

Emo = W*{ %o (“ro( W( /1)) - - - ol (Pro( W(£,)))}

2. There exists a unique (up to a unitary equivalence) W*-KMS
system “C = (15, 1Q,, “a?, “m,) and a bounded *-representation “r, of
&/(h) such that:

(i) “mo(#(h)) < “m,.
(ii) The multitime Euclidean Green functions of the system “C,
restricted to “mq(/(h)) coincide with 4G,,.
(iii) We have

Amo = W*{ Aa?l Aﬂo( Wl)) e Aa,O,,(Ano( Wn))}
for W,,.., W,e o(h).

3. Both systems £C, and “C, are unitarly equivalent to the GNS
W*.KMS system C,= (5, Qq, «?, no(#°(h))").

Proof. Step 1. In the first step we apply in a sketchy way a general
construction of ref. 20 (see also ref. 19), to which we refer for more details.
Because in both cases the constructions of £C, and “C, are identical, we
restrict ourselves to the construction of £C, only.

Let V7 be the free complex vector space built over the set
{(W" s")|s"e EA*}. Then we divide 7# by the natural relations arising
from the properties EG(1)(i), EG(1)(iv), EG(1)(v), and EG(I)(vi),
obtaining a complex vector space V% The sesquilinear form

* g

=Y, Cudy “Goymu, pia(s™", 5°) (2.42)
y

defined on V# is nonnegative by EG(2). The corresponding Hilbert space
will be denoted by £ and the corresponding classes of abstraction will be
denoted by square brackets [-].
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Lifting the natural action £%, of #'(h) on 7#, defined by
ERo(WY W7, s") = (W, W) (0, 5M))

to the space £, we obtain a *-representation of # (h) in 3 which is
bounded because of EG(3).

Lifting the local shift transformation given by EG(1)(iii) into the space
Est;,, we obtain a uniquely determined self-adjoint generator 2H,,. Defining
EQ,=1[(1,0)] € £#;, we have that for any [(W", s")] € £,

Bl (Fro(W1)) - - Bad (Bro( W) BQ2o = [(W", 5]

isp is)
Moreover, the vector-valued maps

Eb+3g— [ %al(Fro( W) Qe "t
k=1
can be holomorphically extended to the tube T being continuous on the
boundary 8T%. In particular, it can be proved'*® that the vector %Q, is
cyclic and separating for the W*-closure “m, of the *-algebra generated by
all products:

Eap (Pro( W) - - Bal (W)

where ¢,,..,t,eR; W,,.., W,e % (h). Thus we have sketched the construc-
tion and the proof that C,= (%54, £Q,; £a®; ®m,) forms a W*-KMS
system. The Euclidean Green functions of the system £C, are equal to G,
by the very construction. Let £Cj= (%%, EQp; Za®; ®m),) be another
W*-KMS system whose Euclidean Green function coincides with G, and
such that £mg, > £z (# (h)) for some

Enye Rep*(#/(h), L(“#5))
Emy = WH{ Fa (Fno(W))) - e (Pro( W)}
Then the isometry

J: Bl (Fro(Wy)) - - Bal (Bro( W) B2,
Ea ! (Fro(Wh)) - B (Bmy( W) B2,

in

can be extended to a unitary operator such that jZQ,=%£Qy;

EO0__ :—1E 0 Et _ :E i—1
a'l_-, A, J; TMe=j]"Mgyj .

Step 2. In the second step we identify the W*-KMS system EC,
with C,. Although this identification follows from Section V of ref. 20, we
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present a straightforward proof below. To start with, let us define a linear
space £ generated by

{Fod, Cro( W) -+ B0 (Pro( WU 1)) P20 15" € E-*, f" € LA(R?)®")
From step 1 we know that 2% = £ and for any [ € Ly(R*)*" the map
E,’,""as - T— H (W(f )) £Q2,
i=1

can be uniquely extended to a holomorphic, vector-valued function on the
tube T# and this extension gives also the holomorphic extension of the
corresponding Green function.

Computing the r.h.s. of

CEal (Frol WF1))) -+ Fad (Pro( WAS))) B8,
Fad(W(f)) B, (Pro( W(£1) - - B (Pro( W(gm))) B20)
=GA(fr —it)s (frs =105 (£, 1), (815 181)s0es (€r i80)) (243)
with the help of the formula (2.8) and comparing it with
CEal (Bro W) --- Bod (Bro( WA 1)) #Q20;
Wz~ "D f ] Bal (Pro(W(g,))) - - Fal (Bro(Wig1))) 20>  (244)

we conclude that
Eal(Eno( W(f))) = Ero( W(z"Pe f)) (245)

on a dense domain 2£ and thus on 4.
Defining a map

:s,,(Eno( W(fu))) - ,s,(En'o( W) £2
= af (mo(W(£,))) - - g (mol W) Ro € Ho (246)

we obtain a densely defined map with a dense range isometry from £ to
A which extends naturally to a unitary map jz. From (2.45) we have
Jefaljgt =al, JE R0 =1, Pmy=jz'no( W(h)) jg

Step 3. In the third step we identify the W*-KMS system “C, with
Cy. The following lemma, whose proof is translated into the fourth step
below, plays a basic role.
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Lemma 2.6. Let &(p)=p? or &(p)=(p2+m?)'2, m>0. Then the
set of functions
V={e"“?f(p)|teR; [ = feL,(R")}
is R-linearly dense in L% R%).

It is because the Euclidean Green functions restricted to the Abelian
sector 7 (h) of #°(h) obey the properties EG(1)-EG(4) that we can apply
the construction presented in step 1 obtaining again a W*-KMS system
ACo = (14, 12,, “a?; “m,), where “m, is the W*-algebra generated by
the operators

Yo (Mo W(f1))) -+ Ao (“mo( WL £,)))

where “n, is the corresponding representation of o/(h) in L(“#5£) and all
f; are real. From the cyclicity of 482, under the action of “m, it follows that
the set of vectors

A“O,(A”o( W) - A“?,,("”o( W(f))) 82,

is linearly dense in “3%,. Defining a map

Jat faq(mo(W(£1))) -+ “og, (“ro W(S))) 96
= ap (mo( W(f1))) - - o (mo( W(f2))) 2

=ro(#(£ s

x I exp{—io(e™"f,; ™" f)} (247)
Isa<f<n
we see that it is an isometry with dense range because of Lemma 2.6.
Moreover, j (2,)=Q
Computing

(.
I

m

420 (An(Wig))) j ) TT mo( Wie= 1)) @

k=1

lIM:

1

n

[T i g))) [1 ai(mo( W(£i))) 2o (248)

=1 k=1

we obtain

<H oG, (7o W(gk)))> it =1 ai(mo(W(g:))) (2.49)
k= k=1
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Therefore applying Lemma 2.6 again, we conclude that
Ja(?mg) j ¥ =no(#(h))" (2.50)

Let us observe also that the map
Aﬁo: W(Z eit,lmfa)

- JI exp{io(e™"f,, e""fp)

lsa<fgn

x [T 4o (“mo( W(£,)) (2.51)

can be extended to representation of the full Weyl algebra #7(h) in L(“;)
and moreover the obtained representation extends “z. For this, let us
observe that

w(r{gewr)

= I explio(e’™f,, e 1)} ] “al(*no W(£,)

l€a<f<n

= JI explio(e™”f,, e [} ji! <H a?,(no( W(f;)))) Ja

1€a<pf<n

=j;! (no <W<§ ei”"”j”,,>>) Ja (2.52)

by using (2.49), and the fact that m, is a representation of % (h). From
Lemma 2.6 we know that for any ge Lj(R“) there exists a sequence

(t‘;,---, t:u)s (f?r“a :1) ELZ( Rd)

such that 3, exp{itgh*} f%— g in L*(R?) sense.
Because 7, is an L,(R“) continuous representation of % (h), it follows

that the limit
im 17 (ro(#(Z5%7))) 1
o 0 k
exists in the weak sense, and therefore we conclude that also
lim [T  exp{io(exp(ity h*) 5., explitih*) £7)}
R I Khp<la<n

x [T *ad, (“no( W) = “R(W(g)) (2.53)

ity
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exists in the weak sense. Now it is easy to check that 47 as defined in (2.53)
is really a *-bounded representation of #°(h) in L(*5#,) and such that
Aﬁol.«(h)=A7to- |

Step 4. Proof of Lemma 2.6. The operator e acts as
e"f=(e""f)~, where ~ and “ denote the Fourier transform and its
inverse. Let us take ge C(R“); which is a dense subspace in L*(R¥). Let

itd

1 -
gl(p)=5[g(p)+g(—p)] and  g,(p =—[g(p)—g( p)]

be Hermitian parts of g. Because g, is the Fourier transform of a real-
valued function, we may write

g(p)—[ Y flp) e’ -y fk(p)e"'"”z—gl(p)]
k=1 k=1

L2

=liga(p)~i ¥, fulp)sin(t,p?) (2.54)

k=1

I?

so it is enough to show that for every & > 0 there exist real-valued functions
Srre fn€ LXRY) and ¢,,..., t, € R such that

gz(p)— 2<a (2.55)

Let B denote a ball in R? of radius ¢ >0 such that supp g( p)<B. Let

fup)=ayp) g:(p), where a,(p)e Co(R?) N LAR?) and a,(p)=a,(p)=
a,(|p})- It is clear that f,(p) is Hermitian and belongs to L*(R“). Then

gAp)— Y. fulp)sin(t, p?)
k=1 r?

n

- z a,(p) sin(1, p?)

k=1

<&l (2.56)

L B)

Let us deform the constant function 1 to a function fye C{B) such that

Jo(P)Z 0V, 5, fo(0)=0, and |1 — foll .25 <& folP)=folp') I Ip|=]p'I.
Then

([1— S au(p) sin(te p?)

k=1

L2(B)
n

<e+u(B)'? sup |follp) — Y axllpl)sin(z, p*)|  (2.57)

1ple[0.c] k=1

where u(B) is the Lebesque measure of the ball B.
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We consider a real algebra generated by 37 _, a.(|p|) sin(z; | p}*) on
(0, ¢]. It is clear that sin(z |p|?) separates points in (0, c] and for every
|p| € (0, c] there exists € R such that sin 7 | p| 5 0. Because we may choose
a(p) such that o =1, our algebra separates points and nowhere vanishes
in (0, ¢]. Thus, applying the Stone-Weierstrass theorem to Cy(0, ¢], we
have that

n

sup |follpl) — X aullpl) sin(z, |p|*) <e

Iple(0, c] k=1

for some a,,.., a, and ¢,,.., t,.. Finally,

gAp)— Y filp)sin(z; p?)

k=1

,Sleale +u(B)?)e

which proves the assertion for &(p)=p2 The same proof works for
E(p)=(p*+m)", m=0. 1

To exploit the stochastic positivity EG(6) of the system “£G and for
the further development we shall introduce two basic concepts of the
generalized thermal process and the generalized thermal random field.

It should be emphasized that these concepts are heavily inspired by
the abstract theory developed by Klein and Landau‘®®’ (see also ref. 32).

Definition 2.7. Any generalized, periodic (with the period f)
stochastic process (£,),.r With values in 9'(R4) will be called a thermal
process (with the temperature f) iff:

Tp(1) The process (£,),.q is symmetric on K, ie.,

V—ﬁ/2sr<ﬂ/2 ergv(R'/)<én > =&, f> (in law) (2.58)
Tp(2) The process (£,), . is (locally) homogeneous, ie.,

Visers Vicamnllern /7 =< /> (inlaw) (2.59)

T+s<f/2

Tp(3) The process {¢,),.r is OS-positive on Kj, i.e., for any bounded
Fe Cb(R“), any zIl E [0’ ﬁ/z] Xll’ [Ile @(Rl]) XII,

OgEF(<£—t'|" f1>” <é—r:7 f;:>) F(<ér',’9 f;x>’1 <érj:v .fn>) (2‘60)
Tp(4) The moments

E<I£I exp(i<£r,-a .fr>)> = G_(ff) f,,(Tlr"’ Tn) (261)

i=1

are continuous in "€ (K;) *” and on 2(R?)*".
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A thermal process £ is called Euclidean invariant if additionally:
Tp(5) The moments (2.61) are invariant under the action of the
Euclidean group E(d) in 9(R9).

A thermal process (£,),. g is called tempered iff the moments (2.61) are
continuous on S(RY)*", L,-continuous iff the moments (2.61) are con-
tinuous on LP(R?)*”, etc.

If (&,), is a generalized thermal process, then its corresponding path
space measure construction leads to the concept of the random generalized
field.

Definition 2.8. Any generalized random field 4# on 2'(K;x R?)
[ie., any probabilistic, Borel cylindric {PBC) measure] will be called a
generalized thermal random field iff:

Tf(1) We have
Veecmup{9; 1(g®[)>=<¢;g®f> (inlaw uf) (2.62)

[ 2(RY)

where r(g® f)(t, x) = g(—1) f(x).
Tf(2) We have

Veecrun{d; t{8®f)>=(¢;:g®f> (inlawu’) (2.63)

[ D(RYy
for any s> 0 such that supp ¢t,(g) = [ —B/2, f/2], where t(g)(7)= g(t +5).
Tf(3) The field u” is OS-positive on the circle Kj, ie., for any
bounded cylindric function F based on (g,®fi,.., £.®f,), where
g:€ C=[0, p/2] for all i, f;e Z(R?), we have
0<SpX(RF({4, 81 ® f1)ss {9, 8. S1))
XF(<¢’ gl®f1>’"'a<¢, gll®f;)>)) (264)

where

-R-F(<¢a & ®fl>""a <¢’ gn®f;:>)
=F({$,18:® /17, {, 12,8 1..>) (2.65)

Tf(4) For any re K, the random elements {¢, 5, ® f) [defined as
unique limits in L7(du”) sense lim,, ,{¢, 5°® f, for any mollifier 62 — 8. ]
exist and moreover the moments

#”<ﬁ exp(i{ ¢, 5,,~®f,->))E FRACIYOE (2.66)

i=1

are continuous in "€ K ;"; f" € D(R) *".
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Tf(5) A generalized random thermal field u is Euclidean invariant iff
the moments G are invariant under the natural action of E(d) in 9(R9).

Additionally. A generalized random thermal field x# will be called
tempered iff the moments (2.66) are tempered distributions, L”-continuous
iff the moments (2.66) are L”-continuous, etc.

Proposition 2.9. 1. Let (£,), be a tempered thermal process with
the temperature . There exists a unique (up to the unitary equivalence)
W*.KMS structure

Co=(H#°, Q% al; nt: A(S(RY)) - L(#%), m®)
where
m® = W* — (o (5 (W(/)))) - - al (mS(W(S)))}

with f;= f,e S(R?) real, whose Euclidean Green functions restricted to

-B2<t, < <1, B2,
Q% al, (AW L))) - - al (RE(W( 1)) Q%)

.....

= oSt N> | pi&u > (2.67)

2. Let u be a tempered thermal field (at the temperature f). There
exists a unique (up to a unitary equivalence) W*-KMS structure

CW = (W, QW; aW; 7 e Hom * (A(S(R?)), L(#™)); m»)
where
m® = W* — {a (@ W) - a7 (W0
tyr L, €R, flon [,€SRY;  fi=f;

whose Buclidean Green function restricted to 7'*)(/(S(R?))) coincides
with G (T1se Ty

3. If the tempered random thermal field u is the path space measure
of a tempered process (¢,),, ie., if

Eexp(i<ét|’ fl >) e exp(i<é!’,,’ fn>)
=pu(exp(i{ 9,0, ® f,>) - --exp(i{ 9, ,,® 1, )) (2.68)

for all 7,,..., 7, € Kp; fy,ry £,€ S(R?), then the W*-KMS systems C*® and
C™ coincide.
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Proof. Let (£,), be a given tempered thermal process at the tem-
perature f>0. It follows from Definition 2.7 that the moments
G¥) (ty,., T,) define on the Abelian sector .sz(/‘(S([Rd)) of the Weyl

.....

possible lack of EG(5)(ii) and with modified EG(1)(ii):
EG(1)(iiy. The functionals

G(O (Th " n) S(Rd)xna(fh ’f‘n)HG}f) f(rl""v )

..........

are continuous and |G - (1;,.., 7,)| <1

Also, EG(3) should be properly modified. All these modifications,
however, do not affect seriously the construction presented in step 1 of
Proposition 2.5. Proceeding analogously to step 1 of Proposition 2.5, we
can construct C%. Similarly we prove the existence of C#. The identification
of C¢ and C* follows from 2.69 and the uniqueness part of 1 and 2. ||

It follows from the results of ref. 32, stochastic positivity EG(6), and
Proposition 2.5 that the thermal structure of the free Bose gas can be
described fully in terms of the corresponding stochastic thermal structures.

Proposition 2.10. Let &(p) be given by (2.1) and let 0 <z be such
that sup, z exp{ —f&(p)} < 1. Then for any §>0:

1. There exists a unique (up to a stochastic equivalence) Gaussian
thermal process (£°), . with values in 2'(R¥) such that

ECY f>=0;  EKE, <&, e))=S{t—1], f@g) (269)

The process (f?),eﬂ is Euclidean invariant, ergodic, and L2-continuous.

2. There exists a unique (up to a stochastic equivalence) Gaussian
generalized thermal random field £ such that

uh(<4, )=
#5({$, 0.8 f>{$,0.f>)=S§(t—7|, f®¢g)

The thermal field 12 is Euclidean invariant, ergodic, and L>-continuous.

(2.70)

3. The generalized random field x4 can be identified with the path
space measure of the process (¢9), g, 1.€., for any bounded, cylindric func-
tion F with base (1, f1)s (Th> f3)

EF((&!‘pfl) <£‘[,,’f;l>)
=ub(F({$,0,® f1>sr 4,0, ®f.>)) (2.71)
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4. Let v% be a Gaussian measure on 2'(R“) with mean zero and the
covariance given by

VK@, [3€0, 8>)=Ci(f®¢g) (272)

Then the measure v8 is the unique stationary measure of the process
(€9),.p and Vi is equal to the restriction of u£ to the o-algebra at t=0, ie.,
148, 50y= V5, where

Z(0)=0{<9,00® 1 >; fe fe D(RY)}

Moreover, the measure v is quasiinvariant under the translations by
2(RY).

Remarks. Other well-known examples of generalized thermal pro-
cesses arise in the study of two-dimensional models of Euclidean (quantum)
field theory®*3* and also in the context of the Euclidean version of the
Bisognano-Wichman theorem.*** 3% Similar stochastic thermal structures
on the Abelian sectors of the corresponding algebras of observables also
appear in the context of (an)harmonic lattice crystals®"2%27 and certain
spin systems.?* 3%

The common problem of all these examples is to construct a modular
structure on whole algebra of observables from arising stochastic thermal
structures on the Abelian sector. In the case of the free Bose gas the
complete solution of this problem is given by Proposition 2.5.

From the assumption sup, |z exp{—pB&(p)}| <1 it follows that the
operator (1 —zexp{ —p&(p)})~" exists in L*(R?) and is bounded, strictly
positive, and self-adjoint. Let h#(RY) be the metric completion of the space
2(R?) equipped with the inner product

(f &)= [T —ze #P)1 (x—y) g(y)dxdy  (273)
From the simple estimates

(AP FAPES (ill}f (1 —ze %N 7 £l gy (2.74)

it follows that h” is essentially equal to L,(R“). Using the L*(R“)-con-
tinuity of the process ¢ and estimates (2.74), we can define a version é°
of ¢9 obtained by extension of the index space 2(R?) onto the space h”.
The new process &° is indexed by Kz xh?(R?). For any Borel subset /< K,
we denote by X(J) the smallest o-algebra generated by {(é,, Nlted,
feh#R)}. For any t,se K, we will denote by [, s] the closed interval
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from ¢ to s in the counterclockwise direction. The corresponding condi-
tional expectations with respect to the g-algebras 2[¢, s] [2(J)] will be
denoted by E{, ,; (resp. Ej).

Proposition 2.11. 1. For any allowed form of §(p), z such that
|ze=9P| <1 the corresponding free thermal process ¢¢ has two-sided
Markov property on K in the sense that

E([)s.r]oE([)r.s] =E({)r.s} OE([)r.s] (275)

2. Let E(J)=a{4(t, f)|teJ, feh®} be the corresponding o-algebras
in B(2'(Kzx R)) and let E°J) denote the corresponding conditional
expectation values. Then the free thermal random field x2 has the following
two-sided Markov property on Kj:

E(I?.v. r] oE([)r‘.s] = E({)r. s} ° E([)r, k)| (276)

Proof. 1t follows easily that the operator h*=h,+pul is a non-
negative self-adjoint operator in h” [on the same domain as in L*(R“)].
Moreover, the covariance operator I'S(t) of the process &° indexed by
K, xh? is given by

Tlty=e " te-F-nH (2.77)

Applying Theorem 4.1 of ref. 32, we conclude the proof of the first part.
The second part follows easily by identification of ¢(¢, x) with £,(x) given
in Proposition 2.10 and the density of 2(R?) in the space h’(R¢). {

2.2, Local aspects [the case &{p) = p?]

Let 4 = R be a bounded region with a boundary 94 of a class at least
C'-piecewise. Then, for any be C(8A4) the self-adjoint extension —4% of
the symmetric operator —4 defined on C°(A4) can be constructed. It is
well known that the arising semigroup {exp(—r4%, >0} is positivity-
preserving on L,(A); therefore there exists a stationary Markov process
4°(t) with independent increments, with values in A for which the kernel
K49 of exp(—t 4%) plays the role of the transition function.

Let #/, be the local Weyl algebra built over the space L,(A4) and let
" be its Fock-space realization in the Fock-Bose space I'_(L,(A4)). In
particular, we have

wiaf)=exp{ila} (f)+a(f)1} =explip (/)] (2.78)

where a, and a} are standard annihilation and creation operators in
I'_\(Ly(4)).
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Let P“*%(d}) be the spectral measure for the operator —A4%. Then,
we can define the finite-volume thermal state w{"? on %% by the formula

0§ (We(f))=exp—3Ch 4. 5(f) (2.79)
where

Cla N =LS1CE 4D 1oy (2.80)

Cl anl )= [ P4O(d2) t—‘f:; (2.81)

It is well known (see, e.g., ref. 17) that for any monotonic sequence (4,),
of bounded regions in RY and with sufficiently regular boundaries 94,
tending to R by inclusion and for any sequence b,, € C(84,) we have the
weak convergence

lim ¢4, ,,=Cf if ze(0,1)

n— oo

The corresponding GNS construction applied to (#75(-; w{*?) leads
again to the W*-KMS system

(A, b) _ A,b). A, b). A,b). (A, b)Y, (A, b) Fyn
CO —(‘%g) )ang ),QB 5“0 )7 71'0 (WA),)

and the corresponding Green functions can again be easily computed and
the analycity properties similar to those of G, established. In particular, the
corresponding Euclidean Green functions £Gy(4, b,,) again fulfill the
system of axioms EG(1)-EG(4) and EG(6); therefore the whole discussion
from Section 2.1 can be repeated with obvious modifications.

Lemma 2.12. Let z=e¢# be sufficiently small and let (4,) be a
monotonic sequence of bounded convex regions in R with boundaries 04,
of class at least C* and with mean curvatures uniformly bounded. Then for
any choice of b, € C(04,), any f,..., f,.€ Ly(4), "€ T# we have the con-
vergence

hIn EGO(An’ bn)((sl ’ fl )a"" (Sm’ fm))

n—=oc

=EGY((51, [1)res (Sus fr)) (2.82)

Proof. The monotonicity in the boundary conditions:
If b,(x) < b,(x) for all xedA, then

KA (x, y) = K" *(x, p) (2.83)

822/80/3-4-26



900 Gielerak and Olkiewicz

for all x, ye 4, t>0. Therefore
sup |‘7{-£A‘b)(x1 y) —..%/;(X, y)l = |X£A’0)(x7 J’)—‘%/;(x’ y)| (284)

be C(d4)
for all t,x,yed, where (%% is the kernel of the semigroup
{exp(—1t 4%)(x, y), 1 =0}, where 4% corresponds to the Neumann boundary
condition. By the (rough) estimate of ref. 36, we have with our assumptions
on (4,)

| o A M) e, ) — A, Y|

d(x, ;)" +d(y, Af.)2>}

< Ce*'t = exp { —c ( ( yP (2.85)

for all x, ye A, teR, where C, ¢, and 120 are some constants.
It is due to the quasifree nature of the states w{"®’ that it is enough
to consider the one-time Green function only,

IEGO(An’ bn)((()’ fl): (Sl 3 fZ)) - EGO((O, fl)’ (S1 s fl))l
< |explio( fy, €170 )]
X |Sg(sl | /2® f>) —exp{ila(f,, eis'h""fz) —o(fy, e"" )1}
x S8(s1, [1® 12)] (2.86)

It is well known that

lim exp[it(—4%"+u1)] =exp[it(—4+ul)]

n—» o0

strongly in L*(R“); therefore we shall omit the symplectic factor in the last
formula, concentrating attention on

I(A"’b")Sg(Slfl®f2)_Sg(s|f1®fz)|

< T 28 [ dxdy £i(x) fo(9) 1A G236 3) = Hign 45, V)]

nz0

+ ¥ 2 [ dxdy £i(x) fuly

nz0
X | (Gt — (% ¥) = Hipw 1y (%, ¥ (2.87)
Therefore localizing first f7, f, and taking into account (2.85), we obtain
lim “t08 8, fi@ 1) =S5(s|/1®f>) (2.88)

provided e et < 1. |
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Remarks. The restriction e #e” < 1 is no doubt only an artifact of
the rough estimate (2.85) used. It is natural to expect that actually this
lemma is valid for all 0 <z<1. For a Dirichlet boundary condition the
constant 4 can be taken to be equal to zero and this gives the result of the
independence of the limiting Green functions of the Dirichlet boundary
condition in the full noncritical interval ze (0, 1).

The finite-volume, conditional thermal processes (resp. thermal random
fields) will be denoted by &(4-%24) (resp. pitb20).

Having established properties EG(1)-EG(4) of the corresponding
Euclidean Green functions #G§" %4 (resp. 4EG{* %)), we can construct
again three different a priori W*-KMS structures: C§* %4), EAC{* %24 and
the basic GNS system C§* %, It appears that all the claims of a properly
modified Proposition 2.5 are still valid and the proof is almost identical,
with the exception of Lemma 2.6, which is replaced by Lemma 2.13.

Let A be a bounded, open, and connected region in R% 4> 2, with a
smooth boundary. Let us define —4%(f)= —Af for fe C%A), where
9(— 4%) consists of those f e L*(A) which satisfy the following:

(a) feC*4)
(b) 0(x)=b(x) f(x) for xedA

with 0" being the normal inward derivative. It follows that —4% for
be C'(d4) is densely defined, symmetric, and strongly positive. Let L? be
the Friedrichs extension of — 4% to a self-adjoint operator. Then, as is well
known (see, e.g., ref. 37) the spectrum of a self-adjoint L° is purely discrete
and all eigenfunctions of L® are real-valued. Moreover, the semigroup
exp(—tL%) is of trace class.

It is well known (see, e.g., ref 37) that —L% possesses real-valued
eigenfunctions {u,} associated with eigenvalues 0>A,>4,> ---.
Moreover, {u,} 7, form a complete set in L¥A).

Lemmma 2.13. A linear space generated by functions [exp(itL®)] f,
where reR and f = f, fe L} A4), is dense in L%(A).

Proof. 1t is enough to show that for every
f= Z Zplp, z,eC
k=1
there exist to, £y, L € R, fo= fo, 1= fiswr fon=Ff,n from L%(Q) such that

=5 Lexnlity£] 5,
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We exploit the fact that exp(it£?) =Y <_, [exp(itd,)] Py, where P, is the
one-dimensional projector onto u,.

Let z,=a,+ib,, a,,b,e€R. Let us define t,=0, fo=>7%_,a.u,,

m=2n, t;=—t;,,for j=1,.,n and
1b;
=u; for j=1,.,n
f= 2
! 1bj—n

—=t—u;_, for j=n+1,.,m
Then

2n
Y. [exp(it,L%)] f;= Z au, +1 Z ’[exp(zt L% —exp(—it;L®)] u;
j=1

j=0 .I
but
exp(it,L*) —exp(—it;L*)=2i Y (sint,A;) P,

k=1
So by putting ;= (n/2)(1/4,) we obtain that

n

Z Lexp(it,L*)] f;= Z aju, +i Z buj=Y zu, 1

j=0 k=1 j=1 k=1
In the sequel we shall need also the following Feynman-Kac formulas:
Proposition 2.14. Let &(p)=p% and let 0 <z < 1.
1. Foranyf=/feL,yA), beC, (34)
Trr 2 PN _ (e~ Pdh+nlay
Trr an(T - (e—ﬁ(A‘,’,+u1,.)))

=l Wp( /) = Ee 4"

=#§)"'“(e'<"" 60®/>) (2.89)
2. Forany —p2<1,< - ST, <P/ fi= Frven fu=Fr€ Lo A)

Tt aan( @ 2 Erng WE(F))) - - ol D Ero WH(F))) T (e ~Aa+nin)

rr,,

Trr_2an=1{e” ad +r1y)

—E(H exp(iC 0, 1) )

pgt? (l_l exp(i(4, 8, ® f; >)) (2.90)
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3. For any sequence (A1,,, by4,) as in Lemma 2.12, any —f/2<7, <
oo T, < B/2, fires o€ LAR?) real and sufficiently small z, the limits

lim E(f] exp(i{ &t o, f,->)>

- .
n o] i=1

[resp. lim #f)A""b“"')<ﬁ exp(i<4, 5r,.®f.->)>]

i=1

exist and are equal to
£( I expli<eb, 1))
=1

[resp. ,u{,’(ﬁ exp(i{4, 51,®f1>)>}

(=1

3. GENTLE PERTURBATIONS OF THE FREE BOSE GAS:
THERMODYNAMIC LIMITS ON THE ABELIAN SECTOR

We shall study the thermodynamic limits of the multiplicative-like
perturbations of the free thermal field x{** given by the following
perturbations:

pPEdg) = Z 7 exp W ((¢,) ulf*(dp) (3.1)
where the interactions W ,(¢,) will be of the following form:

(LGP) The local gentle perturbations
s .
Wﬁ(¢e)=/1fdp(a)f d j gm0 gy (3.2)
0 A
where
. o?
1e™m %) — exp > S4(0, x) exp ind (7, x)

dp is a complex, bounded measure with a compact support and such that
dp(a) =dp(—a); ¢.1, x)=(¢ * x.)(t, x), where (x,).,>0 is a positive
mollifier, ie., 0 <y, € C®(R?), with support of size smaller than ¢ and such
that {, x,(x) dx=1; 1 is the strength of the perturbation.
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(nLGP) Thee nonlocal gentle perturbations
1 £ '
Wik(g) =4 dr [ dp(a) dp(a)
0
x‘[ dxf dy &5 P x — ) re™dm ), (3.3)
A4 A

where 1, dp, ¢, are as in the local case, and the kernel V is chosen to be
an L, integrable function.

Lemma 3.1. For both choices (LGP) and (nLGP) the thermo-
dynamic stability bound

Zﬁfduf)”'”’exp W (¢.) <exp C-|4| (34)

holds, where C is some constant depending on the details of the perturba-
tions.

Proof. We shall consider only the case (nLGP). By simple Gaussian
calculations we obtain

j dulf¥(¢) WN(4.,)"
= Lﬂ drl; [ dpty; [ do(ay; [ axit] ayly

n n
X H Vix;,— y:) exP_% Z a‘iajsf(Ti—Tj’ xi_xj)
i=1 ij=1
i

n
1 [
XeXp—s3 z aiaszp(ti_Tjayi'—yj)
ij=1
Y]

xexp—3 Y, o« SHt,—1,x,—y)) (3.5)

hj=1

Using the positive-definitness of S#, we can estimate

“dué”'”’w) Wi,

=|4|" B*(Var p)*" exp(2nS £(0)) | V|7 | 41" (3.6)
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which shows the bound (3.4) with
C=|Al B(Var p)* exp(2S£(0)) | V|, (3.7)

Moreover, it follows that Z , are entire functions of the coupling constant
reC. |

The characteristic functionals of the perturbed measures x'/#) can be
written in the following forms:

(LGP) case:
#;/f‘eu)(eiw, 2® /> )

=exp—%5'g(g®f| g®f) ¥

nz0

1 8
o el [ o
<[ dxlt TT Lexp{ ~io(® 1) » 2z, x)} =11 pa 5,2} (38)

i=1

where

padt )i =20 [ dufrg) T sebue: (39)
I=1
(nLGP) case:
#%,Em(ew, g®f>)

1 1 #
=exp—3 SHe®12®/) T [ drl; [ dplan;

nz0

<[tz [ dotepis s IT ¥ixi=

% [T [exp{ —ia,(g® f) * S8(zs, x) — fis ® ) # S2) — 1]
i=1

1

X O-A,E(Ta (ay X ’1’; (ﬂ’ J’)'f) (310)
where
0477, (o x)", (B, )iy =A"ufr <H gl T et y:):> (3.11)
I=1 =1

Employing the integration by parts formula, we obtain the following
equalities:
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(LGP)

Padt,x)i=2"exp— Y Sh(z,—1,lx, —x;) o0,

n

x it (H :exp[io;¢.(7;, x,)]: exp {A f: dr L dx f dp(a)

1=2

x [exp{ —ot; Sz, —7; x, —x)} = 1]
:exp[iag (7, x)]:}) (3.12)

(nLGP)
aA,c((t’ o, x)'lla (Ty ﬂ) J’)';)

n
=A"exp— Z al“isf(fl -7 x,—x,)
i=2

n

XeXp — Z ﬁlﬂisf(al_ailyl——yi)

i=2

n

x ulfo0 (H cexpliasb oz, x)]: [] :expliBidulon yi):

=2 =2

X eXp {,1 jﬂdrjdz(a)duﬁ)j dxf dy

[1] A A
X [exp{—oux,Sf(rl —T, X —x)} exP{'ﬂﬂlsf('ﬁ —TL, V11— )’)} —1]
x expliag(z, x)]: Vx— y) -expl iBd(r. y)]:}) (3.13)

in which after a convergent expansion in powers of A we recognize the
well-known®? Kirkwood-Salsburg-like equalities that hold between the
correlation functions. A straightforward application of the contraction map
principle'?®) or the methods of the dual pairs of Banach spaces®® leads to
the proof of the following proposition in the (LGP) case.

Proposition 3.2 (LGP). 1. For |A| <A, (LGP), where

Ao(LGP) =exp(—a%5,(0,0)—1) C!™! (3.14)
where

Cl=sup j: dr f d ] () f dx |e™S45 0 1

o2 = sup{a® e supp di}
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the unique thermodynamic limits

lim p, (7,0 x)]=p1, a, x)]

ATRY T T
exist in the sense of locally uniform convergence. The limiting correlation
functions p,(7, , x){ are continuous, translationally invariant, and have the

cluster decomposition property. Moreover, they are analytic functions in A
for |A] < A,(LGP).

2. Let
re{z|z=""¢o )} n{lz] <&}

where K is the corresponding infinite-volume KS-operator, and oK) is
the spectrum of K in the corresponding Banach space B, (compare refs. 38
and 39).

Then for any such A the unique thermodynamic limits

pulr @, x)i=lim, p, (x, e x)]

exist in the sense of locally uniform convergence and are analytic functions
in A

As a simple corollary we obtain:

Proposition 3.3 (LGP). 1. For AeC as described in point 1 or
2 of Proposition 3.2 the weak limit du} of the measure du , exists and the
limiting measure du? is periodic in f, symmetric on K, and OS-positive on

K;. Moreover, du} is (weakly) analytic in the A perturbation of the free
measure duf.

2. For || <AoLGP) the limiting measure du’ is translationally
invariant with respect to the translations of R? and is ergodic under the
action of this group.

3. For A as in part | the characteristic functional of du? is given by

. 1
ple# @) =exp—3 SHe®f1eg®f)

1
xy mfdp(oc) drdx|!

nz0"""

X H [exp{ _alsf* (g® Nz, xl)} —1]

1=1

x p (T, 2, x)] (3.15)
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A minor modification of the original analysis of the Kirkwood-~
Salsburg identities enables us to control also the thermodynamic limits for
a nonlocal gentle perturbation (3.3).

Proposition 3.4 (nLGP). Let W= (nGLP).
1. For AeC: |A] < A4(nLGP), where

2o(nLGP) = exp( ~ 242 S,(0,0) — 1)(C™)~!

cn =sup j: dr [di2] (@) [ d12] (o)

dex I dy Vix— y) |e—mrS¢(rvx)e—a'r’S:(t.y)_ 1|

, =sup{a e supp di}

lim du’#=du} exists and the limiting measure du; is periodic in f§,
symmetric on K;, and OS-positive on K,;. Moreover, dul is (weakly)
analytic in the 1 perturbation of the free measure. The measure du? is E(d)
invariant and ergodic under the translations by R“ The characteristic
functional of du? is given by

' 1
,Lti‘(e'w‘g@f)):exP_E Cg(g@fl g®f)

1 n
x ¥ ;1—'J‘d(r, x, @)t d(r, X', ')t ] Vix)—x,)

nz0""" i=1

X 1—,[ [exp( —o(,-Sf *(g® f)(z;, xy)

i=1
xexp(—a;S?* (g® f)t}, x}))—1]

xoi((t, x, )] (¢, X', a')]) (3.16)
where

ol((t, x, )5 (¢, X', ')})

n
= lim ﬂl - pidel T xi). - i belx], X))
AR A& 1_[ ,‘];Il

n n
=#ﬁ <1_[ - @ idelTis X) H :eiu}oﬁg(t,’-.x,f):) (3.17)
i=1

i=1
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In particular, we have obtained the following functional integral
representation of the corresponding multitime Euclidean Green functions
corresponding to the infinite-volume limit perturbations of the free Bose
gas in the noncritical regime.

Theorem 3.5. Let V,=(LGP) or V,=(nLGP) and 1€C be
restricted as in part 1 of Proposition 3.4 or part 2 of Proposition 3.2 in the
(LGP) case. Then the Euclidean multitime Green functions on .«/(h} are
given by the following functional integrals:

......

= dul(9) [ exp(i<¢;6,® f>)
i=1

P'(Kgx RY)

(LGP) £ 0
- N

X 1 n n
x Y ;jd(r,x,a)'; I {exp—a,Sﬁ%(Z 5s_l®f,.) (x,-)—l}
i 1=

nz0'"" = 1
x p((T, x, a)})

(nLGP) g 0
= Gfl _/;,(Sl""3 O'n)

x Y jd(r, x,a)1d(t, x', o)t ] Vix;—x])

nz0 i=1

x[exp—Sf*(i 5x-,®f,.> (x)—a'SPx <i és-,®f,> (x’)—lJ
! I=1

=1

x/'tfl,e <H :exp ia1¢£(rl’ xl): " :exp ia;¢5(f;, X;):) (318)

=1

Some properties of the system that are elementary albeit fundamental
for the purposes of the present paper are collected in the following
proposition:

Euclidean multitime infinite-volume Green functions constructed in
Theorem 3.5. Then they can be extended by continuity to the Abelian
sector o7 (h) of the Weyl algebra #°(h), and the continued Green functions
denoted by the same symbol obey properties EG(1)-EG(5)(i).



910 Gielerak and Olkiewicz

Corollary 3.7. Let || <A(LGP) [for the case (LPG)] and
[A] < 2o(nLGP) [for the case (nLGP)}]. Then the following perturbation
expansions are convergent:

(LGP) y L j J’ dr dx dp(e)|}
K,

n>0n px RIx R
BT

X <H exp{ @, 6,® f;>; :explio, P (t,, x1)]: 55 > (3.19)

I=1 0

where { -; -; ;- >5 T denote the truncated expectation values with respect to
the free gas measure du?.

For a class of gentle perturbations of the free Bose gas stochastic
structure another variety of existence results can be established using the
methods of refs. 5 and 40. For this let us assume now that our perturba-
tions are of the following forms:

(LGP), W, (¢.)=(32)
but now dp is an even bounded real measure, A >0, or
(mLGP), W, (¢.)=(3.3)

where dp is also an even bounded real measure and Ve L,(R?) is assumed
to be pointwise nonnegative, i.e., ¥(x)>=0 and A20.

Proposition 3.8. Let du’ , be a locally perturbed free Bose gas
measure by (LGP), or (nLGP), and let 1> 0. Then the following correla-
tion inequalities of the Frohlich-Park type are valid:

. Zyon>Za Za, (3.20)
2. {$g®f);:cosad,: (z,x)>%7<0 (3.21)
AT
3. < Be®), H :cos a;P,: (1;, x;) > (3.22)
i=1
4. <"”‘g®f’ H :cOS o;¢,: (r,,x)> (3.23)
i=1

, T
<Hcosai¢£(s,,xi)]—[cosﬂj {t, J> =0 (3.24)
i J

€

Proof. Basically the same as in ref. 5, employing the duplicate
variable trick and elementary trigonometric identities. [
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Theorem 3.9. Let us consider perturbation (LGP), or (nLGP), of
the free Bose gas thermal field du}.
1. For any 1>0 the unique thermodynamic limit

im, . 1T oxp(i<6, 0,97

ATR i1

i < [T exp(i<4, 5:,®f,»>)>
I=1

for —pR2<s;< - <s5,<B2 (325)

I
3
=
o™
—
=
[N
3
-

exists and the limiting Green functions obey all the properties
EG(1)}-EG(5)(i).

2. In particular the following estimates hold:

2 — d2 E2
(a) S*(f®g,f®g)=m Gy gaglfs /) =0
<SK/®glf®g) (3.26)
)
(o) | (exp s [ do fte)  ax gtx) ot x))}
<expRe - S8/® 81 /@) (327)
© [S4/® g o0 2= <¢,ﬁ®gi>))
i=1
<o) [T 1S8/® .l £,® 20 (3.8)

i=1

Proof. From the correlation inequality (3.23) it follows that
ut(e®/®2) monotonously increases in the volume and that for real ¢,
U e/ ®2) decreases as A T R” This leads to the statement that the unique
limit lim , u (€547 ® &) = y? (e(#/® D)) exists and obeys the estimate (3.27).
Then the estimates (3.28) follow by the application of the Cauchy integral
formula and the analycity in { of u% (e#/®#)). Although the estimate (3.26)
follows from (3.28), its independent proof follows easily from the correlation
inequality (3.21), which says that u%(¢, f ® g)? is monotonously decreasing
in the volume,.

Integrating by parts on the functional space 2'(Kj; x R?) with respect
to the measure du’(¢), we obtain
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EG i S150s S1) G, "G (51000 52)
] lk

X i) e

X - {exp{— i aij*((SSj@fj)}—l}

P—1

dt dx dA(a)|%

X pily ( H sexplio; @ (1), x,-)]:> (3.29)

j=1

From the correlation inequality (3.24) it follows that

p (1T o5 xfe x| = Coar, i xI9) (3:30)

i=1

monotonously increase in the volume A and because they are uniformly
bounded

|Cfl(ria x|l <exp %ﬁanf(O) (3.31)

the unique thermodynamic limit lim, C%=C* exists pointwise on
(Kjgx R“)®" From this, the existence of pointwise limits

lim p4? <H eyt ""’:) =u? ( [T e "/”:) (3.32)
4 j=1 j=1

follows in the same way as demonstrated in ref 40 by the application of
another correlation inequality (originally due to Pfister*’) not listed in
Proposition 3.8 but formulated in ref. 40 in a similar context. Finally, the
proven pointwise convergence is sharpened to the local uniform one by a
standard application of the Mayer-Montroll identities (see, e.g., ref. 38).
From the obtained convergence the following expression for the infinite-

,,,,,,,,,,

1
XZ/-(—'

k=0

<1 e {- % astr 0,80} -1

i=1 j=1

dr dx dA(w)}%

J‘IRﬂx RYx R

X e <l_[ rexplin; 9.(7;, x,-)]1> (3.33)

i=1

The case of nLGP, is analyzed in a similar way. ||
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Remarks The existence and uniqueness of the thermodynamic

.....

from the correlation inequality (3.23) and the umform bound

G (810 s <1 (3.34)

.....

Using methods based on the analysis of the corresponding Kirkwood-
Salsburg identities, one can study the gentle perturbations of the local, free,
conditioned thermal fields described in Section 2.2.

For this goal let us consider a perturbation of the free, conditioned
[by b,,€ C(34)] thermal field u{* % of the form

Al ad)=Z [\ (bay) exp W,(D,) du§™*(P) - (3.35)
where
ZA bag)= (A ba")(eXP W) (3.36)

and W ,(®,) is given by (3.2) or (3.3).

Theorem 3.10. Let (A4,) be any arbitrary net of bounded subsets
of RY with the boundaries of class at least C3-piecewise. Additionally we
shall require that the mean curvature of 04, is uniformly bounded in a. Let
(b3,,) be a sequence of continuous boundary conditions.

Then for || < 2,(LGP), if W, = LGP [respectively |A| < 14(nLGP), if
W ,=nLGP] the unique thermodynamic limit

hm,u"1 bote = 1 2

exists in the sense of weak convergence and moreover A% =pu?.

Proof. The method of the dual pair of Banach spaces as explained in
ref. 38 and applied in a similar situation in refs. 39 and 40 is applied. ||

Remark. The method of refs. 38—40 gives the existence and inde-
pendence on the classical boundary conditions of the limiting thermal field
A% in a larger set of 1 (see also point 2 in Proposition 3.3).

As a corollary we have the following result:

Corollary 3.11. Let (A,),, (b5, ). be as in Theorem 3.10 and let
4G (A, bsa,) be the system of the Euclidean Green functions correspond-
ing to the gentle perturbations of the local, conditioned, free W*-KMS
structure restricted to the Abelian sector o/(h,) of #7(h,). Then for 4 as
in Theorem 3.10 and 0 < z < 1 sufficiently small the unique thermodynamic
limits of the corresponding Euclidean Green functions exist and are equal
to those obtained in Theorems 3.5 and 3.9.
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All the systems of limiting Euclidean Green functions constructed in
this section obey properties EG(1)-EG(5)(i) and correspond to some
generalized thermal processes.

Therefore the general reconstruction procedure of ref. 20 applies (see
Proposition 2.9), leading to certain W*-KMS structures. Further analysis
of the derived W*-KMS structures is contained in forthcoming papers.

4. CONCLUDING REMARKS

4.1. For the finite-volume perturbations of the free thermal field
ui* the corresponding nonhomogeneous process (£i* ), x, has the two-
sided Markov property on K in the sense of Proposition 2.11. The inter-
esting and important question is whether the homogeneous limit 41 R?
preserves the above Markov property. For a gentle perturbation of a class
of lattice anharmonic crystals some results on the preservation of the two-
sided Markov property in the thermodynamic limit have been established
in ref. 42. A constructive route for the verification of the two-sided Markov
property will be formulated below.

4.2. The notion of DLR equations for the gentle perturbations of the
Abelian sector of the free Bose gas in the Euclidean region can be intro-
duced. For this goal, let us denote by IT(A€) the orthogonal projector [in
the space #§=m.c.(C(K;)x D(R?); S§)] onto the subspace #§(A°)=
m.c.(C(Ky) x CE(A€); §F), for A <R open and bounded.

The free thermal kernel S5 is then decomposed as

SE=48E+ 4118 (4.1)
where
“S§=SEo(1~IHA);  “M=SE- 1A (42)

Let yoc be a Gaussian random field with the covariance given by CS/’ It
is clear that the symmetry and OS positivity on K of the free condmoned
Gaussian random field ,uo is preserved and moreover ,uo — ub weakly as
ATRY

Let 2% A€) be the (u°-complete) o-algebra generated by the random
elements of the form (&, >, where fe #5A°). Then the conditional
expectation values of the measure x? with respect to the g-algebra Z°(A°)
are given by

E,{ FIZA}P) = (F(- + T%(¥)) (4.3)
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for po-ae. ¥eP'(Kyx RY), where

M 5e(¥), [ =<, M 4e(f)) (44)

The corresponding conditional expectation values of the perturbed measure
are

E, {FIZ3)H¥)
_#6‘C(F(- +IT%c(¥)) exp Wy(- + IThc(¥))

= C (45)
o (exp W,(- + IThc(¥))

for po-ae. ¥e P'(K;x R?).

In analogy to ref 27 (see also refs. 43 and 44) we define a classical
thermal Gibbs measure corresponding to the gentle perturbation of the free
Bose gas as any probabilistic, cylindric Borel measure u on 2'(K,;x R?)
such that

poE,, {Z(A°) =p (DLR)

for any open, bounded 4 = R?,

It is evident that any solution of (DLR) defines a thermal random field
in the sense of Definition 2.8. Some results about the uniqueness of the
solutions of (DLR) generalizing slightly Theorem 3.10 shall be reported
elsewhere (see also refs. 39 and 40).

The introduced concept of the classical thermal Gibbs measure will be
of particular interest in the case of polynomial perturbations where several
solutions of the corresponding (DLR) equations may exist.’®

Using the (DLR) equation, the constructive approach to the problem
of preservation of the two-sided Markov property on the circle K, for the
limiting thermal random field x} can be formulated. The idea is to show
that for u-ae. ¥e 2'(RY) the limit

lim Eu {F|£%[2,s1°x A)}(¥)
ATRA Az

(where Z([ 1, s]1¢ x A€) is the o-algebra generated by the random elements

(P, g® f>, with g supported on the segment [z, 5] and f supported

in A€) exists and is equal (u?-a.e.) to the conditional expectation value
E{F|Z({t, s} )}(¥)

Details of the proof that indeed, for small values of |4|, this is true will
be reported elsewhere.'®

822/80/3-4-27
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43. For a bounded A = R? the theory of bounded perturbations of
the KMS structures (see, e.g., ref. 17, Chapter 4, and references therein) can
be applied in the thermal representation enabling us to study the gentle
perturbations on the whole Weyl algebra. It is proven in ref. 18 that again
the nonhomogeneous thermal process ( éf"‘),exﬂ determines the corre-
sponding W*-KMS structure obtained from the corresponding GNS
representation. The important problems of constructing the perturbed
(Euclidean-time) Green functions on the whole Weyl algebra #'(h) and of
whether the corresponding homogeneous process (%), x; determines them
and also whether the limiting W*-KMS structure on #'(h) forms a
modular structure will be treated in another paper in this series.

4.4. The Abelian sector of the free Bose critical gas can be described
in the Euclidean region by a certain nonergodic Gaussian generalized
thermal process. Results complementary to those contained in Section 2 for
the critical gas are obtained in ref 18, where thermodynamic limits of the
gentle perturbations on the Abelian sector also have been controlled by
applications of the Frohlich-Park correlation inequalities. The most inter-
esting result of these investigations is that nonergodicity of the limiting,
perturbed thermal process is preserved. Whether this is connected to the
preservation of the Bose-Einstein condensate in the interacting system
remains to be answered.

45. More general, unbounded perturbations (e.g., of polynomial
type) will be described in an another paper of this series.('® Standard tools
of constructive Euclidean quantum field theory, such as the high- (and the
low-) temperature cluster expansions, are used to study the corresponding
perturbations of the free thermal structure on the Abelian sector.
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